Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Load cycling¿¡ µû¸¥ ¼Ò¼ö¼º ½ÇÇè¿ë »ó¾ÆÁú Á¢ÂøÁ¦ÀÇ nanoleakage ¾ç»ó

The nanoleakage patterns of experimental hydrophobic adhesives after load cycling

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2008³â 33±Ç 1È£ p.9 ~ 19
¼Õ¼­Áø, ÀåÁÖÇý, °­¼®È£, À¯Çö¹Ì, Á¶º´ÈÆ, ¼ÕÈ£Çö,
¼Ò¼Ó »ó¼¼Á¤º¸
¼Õ¼­Áø ( Sonh Suh-Jin ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Á¸Çб³½Ç
ÀåÁÖÇý ( Chang Ju-Hea ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Á¸Çб³½Ç
°­¼®È£ ( Kang Suk-Ho ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Á¸Çб³½Ç
À¯Çö¹Ì ( Yoo Heyon-Mee ) - ¼º±Õ°ü´ëÇб³ ÀÇ°ú´ëÇÐ »ï¼º¼­¿ïº´¿ø Ä¡°úº¸Á¸°ú
Á¶º´ÈÆ ( Cho Byung-Hoon ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Á¸Çб³½Ç
¼ÕÈ£Çö ( Son Ho-Hyun ) - ¼­¿ï´ëÇб³ Ä¡ÀÇÇдëÇпø Ä¡°úº¸Á¸Çб³½Ç

Abstract

º» ¿¬±¸ÀÇ ¸ñÀûÀº µÎ °¡Áö ½ÇÇè¿ë ¼Ò¼ö¼º »ó¾ÆÁú Á¢ÂøÁ¦¿Í ÀüÅëÀûÀÎ 3-step »ó¾ÆÁú Á¢ÂøÁ¦ÀÇ nanoleakage ¾ç»óÀ» load cycling Àü, ÈÄ¿¡ ºñ±³ÇÏ¿© »ó¾ÆÁú Á¢ÂøÁ¦ÀÇ ³»±¸¼ºÀ» ¿¹ÃøÇØ º¸°íÀÚ ÇÏ´Â °ÍÀÌ´Ù. µÎ °¡Áö ½ÇÇè¿ë ¼Ò¼ö¼º »ó¾ÆÁú Á¢ÂøÁ¦ Áï, ¿¡ÅºÀ» Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦, ¸ÞźÀ» Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦¸¦ ¸¸µé¾ú´Ù. ´ë±¸Ä¡ 30°³ÀÇ Ä¡°üºÎ 3ºÐÀÇ 1À» Àý´ÜÇÏ°í ÀÓÀÇ·Î 3±ºÀ¸·Î ³ª´©¾î °¢°¢ Scotchbond Multi-Purpose (3M ESPE, St. Paul, MN, USA), ¿¡Åº¿Ã Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦ ¹× ¸ÞźÀ» Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦¸¦ »ç¿ëÇÏ¿© »ó¾ÆÁú Á¢Âø ÈÄ, º¹ÇÕ·¹ÁøÀ¸·Î Ä¡°üºÎ¸¦ ¼öº¹ÇÏ¿´´Ù. °¢°¢ÀÇ Á¢Âø ½Ã½ºÅÛÀ» Load cycling ¿©ºÎ¿¡ µû¶ó µÎ ±ºÀ¸·Î ³ª´©°í °¢°¢ÀÇ Ä¡¾Æ¸¦ Á¢Âø °è¸é¿¡ ¼öÁ÷À¸·Î, ¾à 2.0 mmÀÇ µÎ²²°¡ µÇµµ·Ï Àý´ÜÇÏ¿© Ä¡¾Æ¸¶´Ù 2°³ÀÇ ½ÃÆíÀ» ¾ò¾î °¢ ±º ´ç10°³ÀÇ ½ÃÆíÀ» ¾ò¾ú´Ù. ½ÃÆíÀ» 50 % ammoniacal silver nitrate¸¦ ÀÌ¿ëÇÏ¿© ¿°»öÇÑ ÈÄ ÁÖ»çÀüÀÚÇö¹Ì°æÀ» ÀÌ¿ëÇÏ¿© È¥¼ºÃþÀÇ nanoleakage¸¦ °üÂûÇÏ¿´´Ù. Àº ħÂøÀÇ ºÐÆ÷´Â image analysis software (Scion Image Beta 4.03, Scion Corp., Frederick, MD, USA)¸¦ ÀÌ¿ëÇÏ¿© gray value·Î °è»êÇÏ¿´°í ÀÌ ¿øºÐ»ê ºÐ¼®¹ýÀ¸·Î Åë°èó¸® ÇÏ¿´´Ù. 3Á¾ÀÇ »ó¾ÆÁú Á¢ÂøÁ¦¿¡¼­ ¸ðµÎ nanoleakage°¡ °üÂûµÇ¾úÀ¸³ª, ¿¡Åº¿Ã Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦¿Í ¸ÞźÀ» Æ÷ÇÔ »ó¾ÆÁú Á¢ÂøÁ¦¿¡¼­ Scotchbond Multi-Purpose º¸´Ù ÀûÀº ¾çÀÇ nanoleakage °¡ °üÂûµÇ¾ú´Ù (p < .0001). °¢°¢ÀÇ »ó¾ÆÁú Á¢ÂøÁ¦¿¡¼­ load cycling¿¡ µû¸¥ nanoleakage ¾ç»óÀÇ º¯È­´Â °üÂûµÇÁö ¾Ê¾Ò´Ù. ÀÌ»óÀÇ °á°ú¿¡¼­ Ä£¼ö¼º±â¸¦ ÁÙÀÌ°í ¼Ò¼ö¼º±â¸¦ ±Ø´ëÈ­ ÇÑ ½ÇÇè¿ë »ó¾ÆÁú Á¢ÂøÁ¦°¡ Á¢Âø °è¸éÀÇ ³»±¸¼º Çâ»ó¿¡ µµ¿òÀ» ÁÙ ¼ö ÀÖÀ» °ÍÀ¸·Î »ç·áµÈ´Ù.

The purpose of this study was: (1) to compare nanoleakage patterns of a conventional 3-step etch and rinse adhesive system and two experimental hydrophobic adhesive systems and (2) to investigate the change of the nanoleakage patterns after load cycling. Two kinds of hydrophobic experimental adhesives, ethanol containing adhesive (EA) and methanol containing adhesive (MA), were prepared. Thirty extracted human molars were embedded in resin blocks and occlusal thirds of the crowns were removed. The polished dentin surfaces were etched with a 35 % phosphoric acid etching gel and rinsed with water. Scotchbond Multi-Purpose (MP), EA and MA were used for bonding procedure. Z-250 composite resin was built-up on the adhesive-treated surfaces. Five teeth of each dentin adhesive group were subjected to mechanical load cycling. The teeth were sectioned into 2 mm thick slabs and then stained with 50 % ammoniacal silver nitrate. Ten specimens for each group were examined under scanning electron microscope in backscattering electron mode. All photographs were analyzed using image analysis software. Three regions of each specimen were used for evaluation of the silver uptake within the hybrid layer. The area of silver deposition was calculated and expressed in gray value. Data were statistically analyzed by two-way ANOVA and post-hoc testing of multiple comparisons was done with the Scheffe¡¯s test. Silver particles were observed in all the groups. However, silver particles were more sparsely distributed in the EA group and the MA group than in the MP group (p < .0001). There were no changes in nanoleakage patterns after load cycling.

Å°¿öµå

¼Ò¼ö¼º »ó¾ÆÁú Á¢ÂøÁ¦;³»±¸¼º;È¥¼ºÃþ
Gray value;hydrophobic adhesive;load cycling;nanoleakage

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI